This page covers the options that are available with various Bazel commands,
such as bazel build, bazel run, and bazel test. This page is a companion
to the list of Bazel's commands in Build with Bazel.
Target syntax
Some commands, like build or test, can operate on a list of targets. They
use a syntax more flexible than labels, which is documented in
Specifying targets to build.
Options
The following sections describe the options available during a
build. When --long is used on a help command, the on-line
help messages provide summary information about the meaning, type and
default value for each option.
Most options can only be specified once. When specified multiple times, the last instance wins. Options that can be specified multiple times are identified in the on-line help with the text 'may be used multiple times'.
Package location
--package_path
This option specifies the set of directories that are searched to find the BUILD file for a given package.
Bazel finds its packages by searching the package path. This is a colon separated ordered list of bazel directories, each being the root of a partial source tree.
To specify a custom package path using the --package_path option:
% bazel build --package_path %workspace%:/some/other/root
Package path elements may be specified in three formats:
- If the first character is
/, the path is absolute. - If the path starts with
%workspace%, the path is taken relative to the nearest enclosing bazel directory. For instance, if your working directory is/home/bob/clients/bob_client/bazel/foo, then the string%workspace%in the package-path is expanded to/home/bob/clients/bob_client/bazel. - Anything else is taken relative to the working directory.
This is usually not what you mean to do,
and may behave unexpectedly if you use Bazel from directories below the bazel workspace.
For instance, if you use the package-path element
., and then cd into the directory/home/bob/clients/bob_client/bazel/foo, packages will be resolved from the/home/bob/clients/bob_client/bazel/foodirectory.
If you use a non-default package path, specify it in your Bazel configuration file for convenience.
Bazel doesn't require any packages to be in the current directory, so you can do a build from an empty bazel workspace if all the necessary packages can be found somewhere else on the package path.
Example: Building from an empty client
% mkdir -p foo/bazel % cd foo/bazel % touch WORKSPACE % bazel build --package_path /some/other/path //foo
--deleted_packages
This option specifies a comma-separated list of packages which Bazel should consider deleted, and not attempt to load from any directory on the package path. This can be used to simulate the deletion of packages without actually deleting them.
Error checking
These options control Bazel's error-checking and/or warnings.
--[no]check_visibility
If this option is set to false, visibility checks are demoted to warnings. The default value of this option is true, so that by default, visibility checking is done.
--output_filter=regex
The --output_filter option will only show build and compilation
warnings for targets that match the regular expression. If a target does not
match the given regular expression and its execution succeeds, its standard
output and standard error are thrown away.
Here are some typical values for this option:
| `--output_filter='^//(first/project|second/project):'` | Show the output for the specified packages. |
| `--output_filter='^//((?!(first/bad_project|second/bad_project):).)*$'` | Don't show output for the specified packages. |
| `--output_filter=` | Show everything. |
| `--output_filter=DONT_MATCH_ANYTHING` | Show nothing. |
Tool flags
These options control which options Bazel will pass to other tools.
--copt=cc-option
This option takes an argument which is to be passed to the compiler. The argument will be passed to the compiler whenever it is invoked for preprocessing, compiling, and/or assembling C, C++, or assembler code. It will not be passed when linking.
This option can be used multiple times. For example:
% bazel build --copt="-g0" --copt="-fpic" //foo
will compile the foo library without debug tables, generating
position-independent code.
--host_copt=cc-option
This option takes an argument which is to be passed to the compiler for source files
that are compiled in the host configuration. This is analogous to
the --copt option, but applies only to the
host configuration.
--host_conlyopt=cc-option
This option takes an argument which is to be passed to the compiler for C source files
that are compiled in the host configuration. This is analogous to
the --conlyopt option, but applies only
to the host configuration.
--host_cxxopt=cc-option
This option takes an argument which is to be passed to the compiler for C++ source files
that are compiled in the host configuration. This is analogous to
the --cxxopt option, but applies only to the
host configuration.
--host_linkopt=linker-option
This option takes an argument which is to be passed to the linker for source files
that are compiled in the host configuration. This is analogous to
the --linkopt option, but applies only to
the host configuration.
--conlyopt=cc-option
This option takes an argument which is to be passed to the compiler when compiling C source files.
This is similar to --copt, but only applies to C compilation,
not to C++ compilation or linking. So you can pass C-specific options
(such as -Wno-pointer-sign) using --conlyopt.
--cxxopt=cc-option
This option takes an argument which is to be passed to the compiler when compiling C++ source files.
This is similar to --copt, but only applies to C++ compilation,
not to C compilation or linking. So you can pass C++-specific options
(such as -fpermissive or -fno-implicit-templates) using --cxxopt.
For example:
% bazel build --cxxopt="-fpermissive" --cxxopt="-Wno-error" //foo/cruddy_code
--linkopt=linker-option
This option takes an argument which is to be passed to the compiler when linking.
This is similar to --copt, but only applies to linking,
not to compilation. So you can pass compiler options that only make sense
at link time (such as -lssp or -Wl,--wrap,abort)
using --linkopt. For example:
% bazel build --copt="-fmudflap" --linkopt="-lmudflap" //foo/buggy_code
Build rules can also specify link options in their attributes. This option's settings always take precedence. Also see cc_library.linkopts.
--strip (always|never|sometimes)
This option determines whether Bazel will strip debugging information from
all binaries and shared libraries, by invoking the linker with the -Wl,--strip-debug option.
--strip=always means always strip debugging information.
--strip=never means never strip debugging information.
The default value of --strip=sometimes means strip if the --compilation_mode
is fastbuild.
% bazel build --strip=always //foo:bar
will compile the target while stripping debugging information from all generated binaries.
Bazel's --strip option corresponds with ld's --strip-debug option:
it only strips debugging information. If for some reason you want to strip all symbols,
not just debug symbols, you would need to use ld's --strip-all option,
which you can do by passing --linkopt=-Wl,--strip-all to Bazel. Also be
aware that setting Bazel's --strip flag will override
--linkopt=-Wl,--strip-all, so you should only set one or the other.
If you are only building a single binary and want all symbols stripped, you could also
pass --stripopt=--strip-all and explicitly build the
//foo:bar.stripped version of the target. As described in the section on
--stripopt, this applies a strip action after the final binary is
linked rather than including stripping in all of the build's link actions.
--stripopt=strip-option
This is an additional option to pass to the strip command when generating
a *.stripped binary. The default
is -S -p. This option can be used multiple times.
--fdo_instrument=profile-output-dir
The --fdo_instrument option enables the generation of
FDO (feedback directed optimization) profile output when the
built C/C++ binary is executed. For GCC, the argument provided is used as a
directory prefix for a per-object file directory tree of .gcda files
containing profile information for each .o file.
Once the profile data tree has been generated, the profile tree
should be zipped up, and provided to the
--fdo_optimize=profile-zip
Bazel option to enable the FDO-optimized compilation.
For the LLVM compiler the argument is also the directory under which the raw LLVM profile
data file(s) is dumped. For example:
--fdo_instrument=/path/to/rawprof/dir/.
The options --fdo_instrument and --fdo_optimize cannot be used at the same time.
--fdo_optimize=profile-zip
The --fdo_optimize option enables the use of the
per-object file profile information to perform FDO (feedback
directed optimization) optimizations when compiling. For GCC, the argument
provided is the zip file containing the previously-generated file tree
of .gcda files containing profile information for each .o file.
Alternatively, the argument provided can point to an auto profile identified by the extension .afdo.
For the LLVM compiler the argument provided should point to the indexed LLVM profile output file prepared by the llvm-profdata tool, and should have a .profdata extension.
The options --fdo_instrument and --fdo_optimize cannot be used at the same time.
--[no]output_symbol_counts
If enabled, each gold-invoked link of a C++ executable binary will output
a symbol counts file (via the --print-symbol-counts gold
option). For each linker input, the file logs the number of symbols that were
defined and the number of symbols that were used in the binary.
This information can be used to track unnecessary link dependencies.
The symbol counts file is written to the binary's output path with the name
[targetname].sc.
This option is disabled by default.
--java_language_version=version
This option specifies the version of Java sources. For example:
% bazel build --java_language_version=8 java/com/example/common/foo:all
compiles and allows only constructs compatible with Java 8 specification.
Default value is 11. -->
Possible values are: 8, 9, 10, 11, 14, and 15 and may be extended by
registering custom Java toolchains using default_java_toolchain.
--tool_java_language_version=version
The Java language version used to build tools that are executed during a build. Default value is 11.
--java_runtime_version=version
This option specifies the version of JVM to use to execute the code and run the tests. For example:
% bazel run --java_runtime_version=remotejdk_11 java/com/example/common/foo:java_application
downloads JDK 11 from a remote repository and run the Java application using it.
Default value is localjdk.
Possible values are: localjdk, localjdk_version,
remotejdk_11, and remote_jdk17.
You can extend the values by registering custom JVM using either
local_java_repository or remote_java_repostory repository rules.
--tool_java_runtime_version=version
The version of JVM used to execute tools that are needed during a build.
Default value is remotejdk_11.
--jvmopt=jvm-option
This option allows option arguments to be passed to the Java VM. It can be used with one big argument, or multiple times with individual arguments. For example:
% bazel build --jvmopt="-server -Xms256m" java/com/example/common/foo:all
will use the server VM for launching all Java binaries and set the startup heap size for the VM to 256 MB.
--javacopt=javac-option
This option allows option arguments to be passed to javac. It can be used with one big argument, or multiple times with individual arguments. For example:
% bazel build --javacopt="-g:source,lines" //myprojects:prog
will rebuild a java_binary with the javac default debug info (instead of the bazel default).
The option is passed to javac after the Bazel built-in default options for javac and before the per-rule options. The last specification of any option to javac wins. The default options for javac are:
-source 8 -target 8 -encoding UTF-8
--strict_java_deps (default|strict|off|warn|error)
This option controls whether javac checks for missing direct dependencies. Java targets must explicitly declare all directly used targets as dependencies. This flag instructs javac to determine the jars actually used for type checking each java file, and warn/error if they are not the output of a direct dependency of the current target.
offmeans checking is disabled.warnmeans javac will generate standard java warnings of type[strict]for each missing direct dependency.default,strictanderrorall mean javac will generate errors instead of warnings, causing the current target to fail to build if any missing direct dependencies are found. This is also the default behavior when the flag is unspecified.
Build semantics
These options affect the build commands and/or the output file contents.
--compilation_mode (fastbuild|opt|dbg) (-c)
The --compilation_mode option (often shortened to -c,
especially -c opt) takes an argument of fastbuild, dbg
or opt, and affects various C/C++ code-generation
options, such as the level of optimization and the completeness of
debug tables. Bazel uses a different output directory for each
different compilation mode, so you can switch between modes without
needing to do a full rebuild every time.
fastbuildmeans build as fast as possible: generate minimal debugging information (-gmlt -Wl,-S), and don't optimize. This is the default. Note:-DNDEBUGwill not be set.dbgmeans build with debugging enabled (-g), so that you can use gdb (or another debugger).optmeans build with optimization enabled and withassert()calls disabled (-O2 -DNDEBUG). Debugging information will not be generated inoptmode unless you also pass--copt -g.
--cpu=cpu
This option specifies the target CPU architecture to be used for the compilation of binaries during the build.
--action_env=VAR=VALUE
Specifies the set of environment variables available during the execution of all actions.
Variables can be either specified by name, in which case the value will be taken from the
invocation environment, or by the name=value pair which sets the value independent of the
invocation environment.
This --action_env flag can be specified multiple times. If a value is assigned to the same
variable across multiple --action_env flags, the latest assignment wins.
--experimental_action_listener=label
The experimental_action_listener option instructs Bazel to use
details from the action_listener rule specified by label to
insert extra_actions into the build graph.
--[no]experimental_extra_action_top_level_only
If this option is set to true, extra actions specified by the
--experimental_action_listener command
line option will only be scheduled for top level targets.
--experimental_extra_action_filter=regex
The experimental_extra_action_filter option instructs Bazel to
filter the set of targets to schedule extra_actions for.
This flag is only applicable in combination with the
--experimental_action_listener flag.
By default all extra_actions in the transitive closure of the
requested targets-to-build get scheduled for execution.
--experimental_extra_action_filter will restrict scheduling to
extra_actions of which the owner's label matches the specified
regular expression.
The following example will limit scheduling of extra_actions
to only apply to actions of which the owner's label contains '/bar/':
% bazel build --experimental_action_listener=//test:al //foo/... \ --experimental_extra_action_filter=.*/bar/.*
--host_cpu=cpu
This option specifies the name of the CPU architecture that should be used to build host tools.
--fat_apk_cpu=cpu[,cpu]*
The CPUs to build C/C++ libraries for in the transitive deps of
android_binary rules. Other C/C++ rules are not affected. For example, if a
cc_library appears in the transitive deps of an android_binary rule and a
cc_binary rule, the cc_library will be built at least twice:
once for each CPU specified with --fat_apk_cpu for the
android_binary rule, and once for the CPU specified with
--cpu for the cc_binary rule.
The default is armeabi-v7a.
One .so file is created and packaged in the APK for
each CPU specified with --fat_apk_cpu. The .so file's name
prefixes the name of the android_binary rule with "lib". For example, if the name of
the android_binary is "foo", then the file is libfoo.so.
--per_file_copt=[+-]regex[,[+-]regex]...@option[,option]...
When present, any C++ file with a label or an execution path matching one of the inclusion regex
expressions and not matching any of the exclusion expressions will be built
with the given options. The label matching uses the canonical form of the label
(i.e //package:label_name).
The execution path is the relative path to your workspace directory including the base name (including extension) of the C++ file. It also includes any platform dependent prefixes.
To match the generated files (such as genrule outputs)
Bazel can only use the execution path. In this case the regexp shouldn't start with '//'
since that doesn't match any execution paths. Package names can be used like this:
--per_file_copt=base/.*\.pb\.cc@-g0. This will match every
.pb.cc file under a directory called base.
This option can be used multiple times.
The option is applied regardless of the compilation mode used. For example, it is possible
to compile with --compilation_mode=opt and selectively compile some
files with stronger optimization turned on, or with optimization disabled.
Caveat: If some files are selectively compiled with debug symbols the symbols
might be stripped during linking. This can be prevented by setting
--strip=never.
Syntax: [+-]regex[,[+-]regex]...@option[,option]... Where
regex stands for a regular expression that can be prefixed with
a + to identify include patterns and with - to identify
exclude patterns. option stands for an arbitrary option that is passed
to the C++ compiler. If an option contains a , it has to be quoted like so
\,. Options can also contain @, since only the first
@ is used to separate regular expressions from options.
Example:
--per_file_copt=//foo:.*\.cc,-//foo:file\.cc@-O0,-fprofile-arcs
adds the -O0 and the -fprofile-arcs options to the command
line of the C++ compiler for all .cc files in //foo/ except file.cc.
--dynamic_mode=mode
Determines whether C++ binaries will be linked dynamically, interacting with the linkstatic attribute on build rules.
Modes:
auto: Translates to a platform-dependent mode;defaultfor linux andofffor cygwin.default: Allows bazel to choose whether to link dynamically. See linkstatic for more information.fully: Links all targets dynamically. This will speed up linking time, and reduce the size of the resulting binaries.off: Links all targets in mostly static mode. If-staticis set in linkopts, targets will change to fully static.
--fission (yes|no|[dbg][,opt][,fastbuild])
Enables Fission, which writes C++ debug information to dedicated .dwo files instead of .o files, where it would otherwise go. This substantially reduces the input size to links and can reduce link times.
When set to [dbg][,opt][,fastbuild] (example:
--fission=dbg,fastbuild), Fission is enabled
only for the specified set of compilation modes. This is useful for bazelrc
settings. When set to yes, Fission is enabled
universally. When set to no, Fission is disabled
universally. Default is no.
--force_ignore_dash_static
If this flag is set, any -static options in linkopts of
cc_* rules BUILD files are ignored. This is only intended as a
workaround for C++ hardening builds.
--[no]force_pic
If enabled, all C++ compilations produce position-independent code ("-fPIC"), links prefer PIC pre-built libraries over non-PIC libraries, and links produce position-independent executables ("-pie"). Default is disabled.
--android_resource_shrinking
Selects whether to perform resource shrinking for android_binary rules. Sets the default for the shrink_resources attribute on android_binary rules; see the documentation for that rule for further details. Defaults to off.
--custom_malloc=malloc-library-target
When specified, always use the given malloc implementation, overriding all
malloc="target" attributes, including in those targets that use the
default (by not specifying any malloc).
--crosstool_top=label
This option specifies the location of the crosstool compiler suite
to be used for all C++ compilation during a build. Bazel will look in that
location for a CROSSTOOL file and uses that to automatically determine
settings for --compiler.
--host_crosstool_top=label
If not specified, Bazel uses the value of --crosstool_top to compile
code in the host configuration, such as tools run during the build. The main purpose of this flag
is to enable cross-compilation.
--apple_crosstool_top=label
The crosstool to use for compiling C/C++ rules in the transitive deps of
objc*, ios*, and apple* rules. For those targets, this flag overwrites
--crosstool_top.
--android_crosstool_top=label
The crosstool to use for compiling C/C++ rules in the transitive deps of
android_binary rules. This is useful if other targets in the
build require a different crosstool. The default is to use the crosstool
generated by the android_ndk_repository rule in the WORKSPACE file.
See also --fat_apk_cpu.
--compiler=version
This option specifies the C/C++ compiler version (such as gcc-4.1.0)
to be used for the compilation of binaries during the build. If you want to
build with a custom crosstool, you should use a CROSSTOOL file instead of
specifying this flag.
--android_sdk=label
This option specifies the Android SDK/platform toolchain and Android runtime library that will be used to build any Android-related rule.
The Android SDK will be automatically selected if an android_sdk_repository
rule is defined in the WORKSPACE file.
--java_toolchain=label
This option specifies the label of the java_toolchain used to compile Java source files.
--host_java_toolchain=label
If not specified, bazel uses the value of --java_toolchain to compile
code in the host configuration, such as for tools run during the build. The main purpose of this flag
is to enable cross-compilation.
--javabase=(label)
This option sets the label of the base Java installation to use for bazel run,
bazel test, and for Java binaries built by java_binary and
java_test rules. The JAVABASE and JAVA
"Make" variables are derived from this option.
--host_javabase=label
This option sets the label of the base Java installation to use in the host configuration, for example for host build tools including JavaBuilder and Singlejar.
This does not select the Java compiler that is used to compile Java
source files. The compiler can be selected by settings the
--java_toolchain option.
Execution strategy
These options affect how Bazel will execute the build. They should not have any significant effect on the output files generated by the build. Typically their main effect is on the speed of the build.
--spawn_strategy=strategy
This option controls where and how commands are executed.
standalonecauses commands to be executed as local subprocesses. This value is deprecated. Please uselocalinstead.sandboxedcauses commands to be executed inside a sandbox on the local machine. This requires that all input files, data dependencies and tools are listed as direct dependencies in thesrcs,dataandtoolsattributes. Bazel enables local sandboxing by default, on systems that support sandboxed execution.localcauses commands to be executed as local subprocesses.workercauses commands to be executed using a persistent worker, if available.dockercauses commands to be executed inside a docker sandbox on the local machine. This requires that docker is installed.remotecauses commands to be executed remotely; this is only available if a remote executor has been configured separately.
--strategy mnemonic=strategy
This option controls where and how commands are executed, overriding the --spawn_strategy (and --genrule_strategy with mnemonic Genrule) on a per-mnemonic basis. See --spawn_strategy for the supported strategies and their effects.
--strategy_regexp=<filter,filter,...>=<strategy>
This option specifies which strategy should be used to execute commands that have descriptions
matching a certain regex_filter. See
--per_file_copt for details on
regex_filter matching. See
--spawn_strategy for the supported
strategies and their effects.
The last regex_filter that matches the description is used. This option overrides
other flags for specifying strategy.
- Example:
--strategy_regexp=//foo.*\\.cc,-//foo/bar=localmeans to run actions usinglocalstrategy if their descriptions match //foo.*.cc but not //foo/bar. - Example:
--strategy_regexp='Compiling.*/bar=local' --strategy_regexp=Compiling=sandboxedruns 'Compiling //foo/bar/baz' with thesandboxedstrategy, but reversing the order runs it withlocal. - Example:
--strategy_regexp='Compiling.*/bar=local,sandboxed'runs 'Compiling //foo/bar/baz' with thelocalstrategy and falls back tosandboxedif it fails.
--genrule_strategy=strategy
This is a deprecated short-hand for --strategy=Genrule=strategy.
--jobs=n (-j)
This option, which takes an integer argument, specifies a limit on the number of jobs that should be executed concurrently during the execution phase of the build.
--progress_report_interval=n
Bazel periodically prints a progress report on jobs that are not
finished yet (such as long running tests). This option sets the
reporting frequency, progress will be printed every n
seconds.
The default is 0, that means an incremental algorithm: the first report will be printed after 10 seconds, then 30 seconds and after that progress is reported once every minute.
When bazel is using cursor control, as specified by
--curses, progress is reported every second.
--local_{ram,cpu}_resources resources or resource expression
These options specify the amount of local resources (RAM in MB and number of CPU logical cores)
that Bazel can take into consideration when scheduling build and test activities to run locally. They take
an integer, or a keyword (HOST_RAM or HOST_CPUS) optionally followed by [-|*float]
(for example, --local_cpu_resources=2, --local_ram_resources=HOST_RAM*.5,
--local_cpu_resources=HOST_CPUS-1).
The flags are independent; one or both may be set. By default, Bazel estimates
the amount of RAM and number of CPU cores directly from the local system's configuration.
--[no]build_runfile_links
This option, which is enabled by default, specifies whether the runfiles
symlinks for tests and binaries should be built in the output directory.
Using --nobuild_runfile_links can be useful
to validate if all targets compile without incurring the overhead
for building the runfiles trees.
When tests (or applications) are executed, their run-time data
dependencies are gathered together in one place. Within Bazel's
output tree, this "runfiles" tree is typically rooted as a sibling of
the corresponding binary or test.
During test execution, runfiles may be accessed using paths of the form
$TEST_SRCDIR/workspace/packagename/filename.
The runfiles tree ensures that tests have access to all the files
upon which they have a declared dependence, and nothing more. By
default, the runfiles tree is implemented by constructing a set of
symbolic links to the required files. As the set of links grows, so
does the cost of this operation, and for some large builds it can
contribute significantly to overall build time, particularly because
each individual test (or application) requires its own runfiles tree.
--[no]build_runfile_manifests
This option, which is enabled by default, specifies whether runfiles manifests
should be written to the output tree.
Disabling it implies --nobuild_runfile_links.
It can be disabled when executing tests remotely, as runfiles trees will be created remotely from in-memory manifests.
--[no]discard_analysis_cache
When this option is enabled, Bazel will discard the analysis cache right before execution starts, thus freeing up additional memory (around 10%) for the execution phase. The drawback is that further incremental builds will be slower. See also memory-saving mode.
--[no]keep_going (-k)
As in GNU Make, the execution phase of a build stops when the first error is encountered. Sometimes it is useful to try to build as much as possible even in the face of errors. This option enables that behavior, and when it is specified, the build will attempt to build every target whose prerequisites were successfully built, but will ignore errors.
While this option is usually associated with the execution phase of
a build, it also affects the analysis phase: if several targets are
specified in a build command, but only some of them can be
successfully analyzed, the build will stop with an error
unless --keep_going is specified, in which case the
build will proceed to the execution phase, but only for the targets
that were successfully analyzed.
--[no]use_ijars
This option changes the way java_library targets are
compiled by Bazel. Instead of using the output of a
java_library for compiling dependent
java_library targets, Bazel will create interface jars
that contain only the signatures of non-private members (public,
protected, and default (package) access methods and fields) and use
the interface jars to compile the dependent targets. This makes it
possible to avoid recompilation when changes are only made to
method bodies or private members of a class.
--[no]interface_shared_objects
This option enables interface shared objects, which makes binaries and other shared libraries depend on the interface of a shared object, rather than its implementation. When only the implementation changes, Bazel can avoid rebuilding targets that depend on the changed shared library unnecessarily.
Output selection
These options determine what to build or test.
--[no]build
This option causes the execution phase of the build to occur; it is on by default. When it is switched off, the execution phase is skipped, and only the first two phases, loading and analysis, occur.
This option can be useful for validating BUILD files and detecting errors in the inputs, without actually building anything.
--[no]build_tests_only
If specified, Bazel will build only what is necessary to run the *_test
and test_suite rules that were not filtered due to their
size,
timeout,
tag, or
language.
If specified, Bazel will ignore other targets specified on the command line.
By default, this option is disabled and Bazel will build everything
requested, including *_test and test_suite rules that are filtered out from
testing. This is useful because running
bazel test --build_tests_only foo/... may not detect all build
breakages in the foo tree.
--[no]check_up_to_date
This option causes Bazel not to perform a build, but merely check whether all specified targets are up-to-date. If so, the build completes successfully, as usual. However, if any files are out of date, instead of being built, an error is reported and the build fails. This option may be useful to determine whether a build has been performed more recently than a source edit (for example, for pre-submit checks) without incurring the cost of a build.
See also --check_tests_up_to_date.
--[no]compile_one_dependency
Compile a single dependency of the argument files. This is useful for syntax checking source files in IDEs, for example, by rebuilding a single target that depends on the source file to detect errors as early as possible in the edit/build/test cycle. This argument affects the way all non-flag arguments are interpreted: each argument must be a file target label or a plain filename relative to the current working directory, and one rule that depends on each source filename is built. For
C++ and Java sources, rules in the same language space are preferentially chosen. For multiple rules with the same preference, the one that appears first in the BUILD file is chosen. An explicitly named target pattern which does not reference a source file results in an error.
--save_temps
The --save_temps option causes temporary outputs from the compiler to be
saved. These include .s files (assembler code), .i (preprocessed C) and .ii
(preprocessed C++) files. These outputs are often useful for debugging. Temps will only be
generated for the set of targets specified on the command line.
The --save_temps flag currently works only for cc_* rules.
To ensure that Bazel prints the location of the additional output files, check that
your --show_result n
setting is high enough.
--build_tag_filters=tag[,tag]*
If specified, Bazel will build only targets that have at least one required tag (if any of them are specified) and does not have any excluded tags. Build tag filter is specified as comma delimited list of tag keywords, optionally preceded with '-' sign used to denote excluded tags. Required tags may also have a preceding '+' sign.
When running tests, Bazel ignores --build_tag_filters for test targets,
which are built and run even if they do not match this filter. To avoid building them, filter
test targets using --test_tag_filters or by explicitly excluding them.
--test_size_filters=size[,size]*
If specified, Bazel will test (or build if --build_tests_only
is also specified) only test targets with the given size. Test size filter
is specified as comma delimited list of allowed test size values (small,
medium, large or enormous), optionally preceded with '-' sign used to denote
excluded test sizes. For example,
% bazel test --test_size_filters=small,medium //foo:all
% bazel test --test_size_filters=-large,-enormous //foo:all
will test only small and medium tests inside //foo.
By default, test size filtering is not applied.
--test_timeout_filters=timeout[,timeout]*
If specified, Bazel will test (or build if --build_tests_only
is also specified) only test targets with the given timeout. Test timeout filter
is specified as comma delimited list of allowed test timeout values (short,
moderate, long or eternal), optionally preceded with '-' sign used to denote
excluded test timeouts. See --test_size_filters
for example syntax.
By default, test timeout filtering is not applied.
--test_tag_filters=tag[,tag]*
If specified, Bazel will test (or build if --build_tests_only
is also specified) only test targets that have at least one required tag
(if any of them are specified) and does not have any excluded tags. Test tag
filter is specified as comma delimited list of tag keywords, optionally
preceded with '-' sign used to denote excluded tags. Required tags may also
have a preceding '+' sign.
For example,
% bazel test --test_tag_filters=performance,stress,-flaky //myproject:all
will test targets that are tagged with either performance or
stress tag but are not tagged with the flaky tag.
By default, test tag filtering is not applied. Note that you can also filter
on test's size and local tags in
this manner.
--test_lang_filters=lang[,lang]*
Specifies a comma-separated list of test languages for languages with an official *_test rule the
(see build encyclopedia for a full list of these). Each
language can be optionally preceded with '-' to specify excluded
languages. The name used for each language should be the same as
the language prefix in the *_test rule, for example,
cc, java or sh.
If specified, Bazel will test (or build if --build_tests_only
is also specified) only test targets of the specified language(s).
For example,
% bazel test --test_lang_filters=cc,java foo/...
will test only the C/C++ and Java tests (defined using
cc_test and java_test rules, respectively)
in foo/..., while
% bazel test --test_lang_filters=-sh,-java foo/...
will run all of the tests in foo/... except for the
sh_test and java_test tests.
By default, test language filtering is not applied.
--test_filter=filter-expression
Specifies a filter that the test runner may use to pick a subset of tests for running. All targets specified in the invocation are built, but depending on the expression only some of them may be executed; in some cases, only certain test methods are run.
The particular interpretation of filter-expression is up to
the test framework responsible for running the test. It may be a glob,
substring, or regexp. --test_filter is a convenience
over passing different --test_arg filter arguments,
but not all frameworks support it.
Verbosity
These options control the verbosity of Bazel's output, either to the terminal, or to additional log files.
--explain=logfile
This option, which requires a filename argument, causes the
dependency checker in bazel build's execution phase to
explain, for each build step, either why it is being executed, or
that it is up-to-date. The explanation is written
to logfile.
If you are encountering unexpected rebuilds, this option can help to
understand the reason. Add it to your .bazelrc so that
logging occurs for all subsequent builds, and then inspect the log
when you see an execution step executed unexpectedly. This option
may carry a small performance penalty, so you might want to remove
it when it is no longer needed.
--verbose_explanations
This option increases the verbosity of the explanations generated when the --explain option is enabled.
In particular, if verbose explanations are enabled, and an output file is rebuilt because the command used to build it has changed, then the output in the explanation file will include the full details of the new command (at least for most commands).
Using this option may significantly increase the length of the
generated explanation file and the performance penalty of using
--explain.
If --explain is not enabled, then
--verbose_explanations has no effect.
--profile=file
This option, which takes a filename argument, causes Bazel to write
profiling data into a file. The data then can be analyzed or parsed using the
bazel analyze-profile command. The Build profile can be useful in
understanding where Bazel's build command is spending its time.
--[no]show_loading_progress
This option causes Bazel to output package-loading progress messages. If it is disabled, the messages won't be shown.
--[no]show_progress
This option causes progress messages to be displayed; it is on by default. When disabled, progress messages are suppressed.
--show_progress_rate_limit=n
This option causes bazel to display at most one progress message per n seconds,
where n is a real number.
The default value for this option is 0.02, meaning bazel will limit the progress
messages to one per every 0.02 seconds.
--show_result=n
This option controls the printing of result information at the end
of a bazel build command. By default, if a single
build target was specified, Bazel prints a message stating whether
or not the target was successfully brought up-to-date, and if so,
the list of output files that the target created. If multiple
targets were specified, result information is not displayed.
While the result information may be useful for builds of a single
target or a few targets, for large builds (such as an entire top-level
project tree), this information can be overwhelming and distracting;
this option allows it to be controlled. --show_result
takes an integer argument, which is the maximum number of targets
for which full result information should be printed. By default,
the value is 1. Above this threshold, no result information is
shown for individual targets. Thus zero causes the result
information to be suppressed always, and a very large value causes
the result to be printed always.
Users may wish to choose a value in-between if they regularly
alternate between building a small group of targets (for example,
during the compile-edit-test cycle) and a large group of targets
(for example, when establishing a new workspace or running
regression tests). In the former case, the result information is
very useful whereas in the latter case it is less so. As with all
options, this can be specified implicitly via
the .bazelrc file.
The files are printed so as to make it easy to copy and paste the filename to the shell, to run built executables. The "up-to-date" or "failed" messages for each target can be easily parsed by scripts which drive a build.
--sandbox_debug
This option causes Bazel to print extra debugging information when using sandboxing for action execution. This option also preserves sandbox directories, so that the files visible to actions during execution can be examined.
--subcommands (-s)
This option causes Bazel's execution phase to print the full command line for each command prior to executing it.
>>>>> # //examples/cpp:hello-world [action 'Linking examples/cpp/hello-world']
(cd /home/johndoe/.cache/bazel/_bazel_johndoe/4c084335afceb392cfbe7c31afee3a9f/bazel && \
exec env - \
/usr/bin/gcc -o bazel-out/local-fastbuild/bin/examples/cpp/hello-world -B/usr/bin/ -Wl,-z,relro,-z,now -no-canonical-prefixes -pass-exit-codes -Wl,-S -Wl,@bazel-out/local_linux-fastbuild/bin/examples/cpp/hello-world-2.params)
Where possible, commands are printed in a Bourne shell compatible syntax,
so that they can be easily copied and pasted to a shell command prompt.
(The surrounding parentheses are provided to protect your shell from the
cd and exec calls; be sure to copy them!)
However some commands are implemented internally within Bazel, such as
creating symlink trees. For these there's no command line to display.
--subcommands=pretty_print may be passed to print
the arguments of the command as a list rather than as a single line. This may
help make long command lines more readable.
See also --verbose_failures, below.
For logging subcommands to a file in a tool-friendly format, see --execution_log_json_file and --execution_log_binary_file.
--verbose_failures
This option causes Bazel's execution phase to print the full command line for commands that failed. This can be invaluable for debugging a failing build.
Failing commands are printed in a Bourne shell compatible syntax, suitable for copying and pasting to a shell prompt.
Workspace status
Use these options to "stamp" Bazel-built binaries: to embed additional information into the
binaries, such as the source control revision or other workspace-related information. You can use
this mechanism with rules that support the stamp attribute, such as
genrule, cc_binary, and more.
--workspace_status_command=program
This flag lets you specify a binary that Bazel runs before each build. The program can report information about the status of the workspace, such as the current source control revision.
The flag's value must be a path to a native program. On Linux/macOS this may be any executable. On Windows this must be a native binary, typically an ".exe", ".bat", or a ".cmd" file.
The program should print zero or more key/value pairs to standard output, one entry on each line, then exit with zero (otherwise the build fails). The key names can be anything but they may only use upper case letters and underscores. The first space after the key name separates it from the value. The value is the rest of the line (including additional whitespaces). Neither the key nor the value may span multiple lines. Keys must not be duplicated.
Bazel partitions the keys into two buckets: "stable" and "volatile". (The names "stable" and "volatile" are a bit counter-intuitive, so don't think much about them.)
Bazel then writes the key-value pairs into two files:
bazel-out/stable-status.txtcontains all keys and values where the key's name starts withSTABLE_bazel-out/volatile-status.txtcontains the rest of the keys and their values
The contract is:
"stable" keys' values should change rarely, if possible. If the contents of
bazel-out/stable-status.txtchange, Bazel invalidates the actions that depend on them. In other words, if a stable key's value changes, Bazel will rerun stamped actions. Therefore the stable status should not contain things like timestamps, because they change all the time, and would make Bazel rerun stamped actions with each build.Bazel always outputs the following stable keys:
BUILD_EMBED_LABEL: value of--embed_labelBUILD_HOST: the name of the host machine that Bazel is running onBUILD_USER: the name of the user that Bazel is running as
"volatile" keys' values may change often. Bazel expects them to change all the time, like timestamps do, and duly updates the
bazel-out/volatile-status.txtfile. In order to avoid rerunning stamped actions all the time though, Bazel pretends that the volatile file never changes. In other words, if the volatile status file is the only file whose contents has changed, Bazel will not invalidate actions that depend on it. If other inputs of the actions have changed, then Bazel reruns that action, and the action will see the updated volatile status, but just the volatile status changing alone will not invalidate the action.Bazel always outputs the following volatile keys:
BUILD_TIMESTAMP: time of the build in seconds since the Unix Epoch (the value ofSystem.currentTimeMillis()divided by a thousand)FORMATTED_DATE: time of the build Formatted asyyyy MMM d HH mm ss EEE(for example 2023 Jun 2 01 44 29 Fri) in UTC.
On Linux/macOS you can pass --workspace_status_command=/bin/true to
disable retrieving workspace status, because true does nothing, successfully (exits
with zero) and prints no output. On Windows you can pass the path of MSYS's true.exe
for the same effect.
If the workspace status command fails (exits non-zero) for any reason, the build will fail.
Example program on Linux using Git:
#!/bin/bash echo "CURRENT_TIME $(date +%s)" echo "RANDOM_HASH $(cat /proc/sys/kernel/random/uuid)" echo "STABLE_GIT_COMMIT $(git rev-parse HEAD)" echo "STABLE_USER_NAME $USER"
Pass this program's path with --workspace_status_command, and the stable status file
will include the STABLE lines and the volatile status file will include the rest of the lines.
--[no]stamp
This option, in conjunction with the stamp rule attribute, controls whether to
embed build information in binaries.
Stamping can be enabled or disabled explicitly on a per-rule basis using the
stamp attribute. Please refer to the Build Encyclopedia for details. When
a rule sets stamp = -1 (the default for *_binary rules), this option
determines whether stamping is enabled.
Bazel never stamps binaries that are built for the host configuration,
regardless of this option or the stamp attribute. For rules that set stamp =
0 (the default for *_test rules), stamping is disabled regardless of
--[no]stamp. Specifying --stamp does not force targets to be rebuilt if
their dependencies have not changed.
Setting --nostamp is generally desireable for build performance, as it
reduces input volatility and maximizes build caching.
Platform
Use these options to control the host and target platforms that configure how builds work, and to control what execution platforms and toolchains are available to Bazel rules.
Please see background information on Platforms and Toolchains.
--platforms=labels
The labels of the platform rules describing the target platforms for the current command.
--host_platform=label
The label of a platform rule that describes the host system.
--extra_execution_platforms=labels
The platforms that are available as execution platforms to run actions. Platforms can be specified by exact target, or as a target pattern. These platforms will be considered before those declared in the WORKSPACE file by register_execution_platforms().
--extra_toolchains=labels
The toolchain rules to be considered during toolchain resolution. Toolchains can be specified by exact target, or as a target pattern. These toolchains will be considered before those declared in the WORKSPACE file by register_toolchains().
--toolchain_resolution_debug=regex
Print debug information while finding toolchains if the toolchain type matches
the regex. Multiple regexes can be separated by commas. The regex can be
negated by using a - at the beginning. This might help developers
of Bazel or Starlark rules with debugging failures due to missing toolchains.
Miscellaneous
--flag_alias=alias_name=target_path
A convenience flag used to bind longer Starlark build settings to a shorter name. For more details, see the Starlark Configurations.
--symlink_prefix=string
Changes the prefix of the generated convenience symlinks. The
default value for the symlink prefix is bazel- which
will create the symlinks bazel-bin, bazel-testlogs, and
bazel-genfiles.
If the symbolic links cannot be created for any reason, a warning is issued but the build is still considered a success. In particular, this allows you to build in a read-only directory or one that you have no permission to write into. Any paths printed in informational messages at the conclusion of a build will only use the symlink-relative short form if the symlinks point to the expected location; in other words, you can rely on the correctness of those paths, even if you cannot rely on the symlinks being created.
Some common values of this option:
Suppress symlink creation:
--symlink_prefix=/will cause Bazel to not create or update any symlinks, including thebazel-outandbazel-<workspace>symlinks. Use this option to suppress symlink creation entirely.Reduce clutter:
--symlink_prefix=.bazel/will cause Bazel to create symlinks calledbin(etc) inside a hidden directory.bazel.
--platform_suffix=string
Adds a suffix to the configuration short name, which is used to determine the output directory. Setting this option to different values puts the files into different directories, for example to improve cache hit rates for builds that otherwise clobber each others output files, or to keep the output files around for comparisons.
--default_visibility=(private|public)
Temporary flag for testing bazel default visibility changes. Not intended for general use but documented for completeness' sake.
--[no]use_action_cache
This option is enabled by default. If disabled, Bazel will not use its local action cache. Disabling the local action cache saves memory and disk space for clean builds, but will make incremental builds slower.
--starlark_cpu_profile=_file_
This flag, whose value is the name of a file, causes Bazel to gather statistics about CPU usage by all Starlark threads, and write the profile, in pprof format, to the named file.
Use this option to help identify Starlark functions that make loading and analysis slow due to excessive computation. For example:
$ bazel build --nobuild --starlark_cpu_profile=/tmp/pprof.gz my/project/...
$ pprof /tmp/pprof.gz
(pprof) top
Type: CPU
Time: Feb 6, 2020 at 12:06pm (PST)
Duration: 5.26s, Total samples = 3.34s (63.55%)
Showing nodes accounting for 3.34s, 100% of 3.34s total
flat flat% sum% cum cum%
1.86s 55.69% 55.69% 1.86s 55.69% sort_source_files
1.02s 30.54% 86.23% 1.02s 30.54% expand_all_combinations
0.44s 13.17% 99.40% 0.44s 13.17% range
0.02s 0.6% 100% 3.34s 100% sorted
0 0% 100% 1.38s 41.32% my/project/main/BUILD
0 0% 100% 1.96s 58.68% my/project/library.bzl
0 0% 100% 3.34s 100% main
For different views of the same data, try the pprof commands svg,
web, and list.
Using Bazel for releases
Bazel is used both by software engineers during the development cycle, and by release engineers when preparing binaries for deployment to production. This section provides a list of tips for release engineers using Bazel.
Significant options
When using Bazel for release builds, the same issues arise as for other scripts that perform a build. For more details, see Call Bazel from scripts. In particular, the following options are strongly recommended:
These options are also important:
--package_path--symlink_prefix: for managing builds for multiple configurations, it may be convenient to distinguish each build with a distinct identifier, such as "64bit" vs. "32bit". This option differentiates thebazel-bin(etc.) symlinks.
Running tests
To build and run tests with bazel, type bazel test followed by
the name of the test targets.
By default, this command performs simultaneous build and test
activity, building all specified targets (including any non-test
targets specified on the command line) and testing
*_test and test_suite targets as soon as
their prerequisites are built, meaning that test execution is
interleaved with building. Doing so usually results in significant
speed gains.
Options for bazel test
--cache_test_results=(yes|no|auto) (-t)
If this option is set to 'auto' (the default) then Bazel will only rerun a test if any of the following conditions applies:
- Bazel detects changes in the test or its dependencies
- the test is marked as
external - multiple test runs were requested with
--runs_per_test - the test failed.
If 'no', all tests will be executed unconditionally.
If 'yes', the caching behavior will be the same as auto
except that it may cache test failures and test runs with
--runs_per_test.
Users who have enabled this option by default in
their .bazelrc file may find the
abbreviations -t (on) or -t- (off)
convenient for overriding the default on a particular run.
--check_tests_up_to_date
This option tells Bazel not to run the tests, but to merely check and report the cached test results. If there are any tests which have not been previously built and run, or whose tests results are out-of-date (for example, because the source code or the build options have changed), then Bazel will report an error message ("test result is not up-to-date"), will record the test's status as "NO STATUS" (in red, if color output is enabled), and will return a non-zero exit code.
This option also implies
[--check_up_to_date](#check-up-to-date) behavior.
This option may be useful for pre-submit checks.
--test_verbose_timeout_warnings
This option tells Bazel to explicitly warn the user if a test's timeout is significantly longer than the test's actual execution time. While a test's timeout should be set such that it is not flaky, a test that has a highly over-generous timeout can hide real problems that crop up unexpectedly.
For instance, a test that normally executes in a minute or two should not have a timeout of ETERNAL or LONG as these are much, much too generous.
This option is useful to help users decide on a good timeout value or sanity check existing timeout values.
--[no]test_keep_going
By default, all tests are run to completion. If this flag is disabled,
however, the build is aborted on any non-passing test. Subsequent build steps
and test invocations are not run, and in-flight invocations are canceled.
Do not specify both --notest_keep_going and --keep_going.
--flaky_test_attempts=attempts
This option specifies the maximum number of times a test should be attempted
if it fails for any reason. A test that initially fails but eventually
succeeds is reported as FLAKY on the test summary. It is,
however, considered to be passed when it comes to identifying Bazel exit code
or total number of passed tests. Tests that fail all allowed attempts are
considered to be failed.
By default (when this option is not specified, or when it is set to
default), only a single attempt is allowed for regular tests, and
3 for test rules with the flaky attribute set. You can specify
an integer value to override the maximum limit of test attempts. Bazel allows
a maximum of 10 test attempts in order to prevent abuse of the system.
--runs_per_test=[regex@]number
This option specifies the number of times each test should be executed. All test executions are treated as separate tests (fallback functionality will apply to each of them independently).
The status of a target with failing runs depends on the value of the
--runs_per_test_detects_flakes flag:
- If absent, any failing run causes the entire test to fail.
- If present and two runs from the same shard return PASS and FAIL, the test will receive a status of flaky (unless other failing runs cause it to fail).
If a single number is specified, all tests will run that many times.
Alternatively, a regular expression may be specified using the syntax
regex@number. This constrains the effect of --runs_per_test to targets
which match the regex (--runs_per_test=^//pizza:.*@4 runs all tests
under //pizza/ 4 times).
This form of --runs_per_test may be specified more than once.
--[no]runs_per_test_detects_flakes
If this option is specified (by default it is not), Bazel will detect flaky
test shards through --runs_per_test. If one or more runs for a single shard
fail and one or more runs for the same shard pass, the target will be
considered flaky with the flag. If unspecified, the target will report a
failing status.
--test_summary=output_style
Specifies how the test result summary should be displayed.
shortprints the results of each test along with the name of the file containing the test output if the test failed. This is the default value.terselikeshort, but even shorter: only print information about tests which did not pass.detailedprints each individual test case that failed, not only each test. The names of test output files are omitted.nonedoes not print test summary.
--test_output=output_style
Specifies how test output should be displayed:
summaryshows a summary of whether each test passed or failed. Also shows the output log file name for failed tests. The summary will be printed at the end of the build (during the build, one would see just simple progress messages when tests start, pass or fail). This is the default behavior.errorssends combined stdout/stderr output from failed tests only into the stdout immediately after test is completed, ensuring that test output from simultaneous tests is not interleaved with each other. Prints a summary at the build as per summary output above.allis similar toerrorsbut prints output for all tests, including those which passed.streamedstreams stdout/stderr output from each test in real-time.
--java_debug
This option causes the Java virtual machine of a java test to wait for a connection from a
JDWP-compliant debugger before starting the test. This option implies --test_output=streamed.
--[no]verbose_test_summary
By default this option is enabled, causing test times and other additional
information (such as test attempts) to be printed to the test summary. If
--noverbose_test_summary is specified, test summary will
include only test name, test status and cached test indicator and will
be formatted to stay within 80 characters when possible.
--test_tmpdir=path
Specifies temporary directory for tests executed locally. Each test will be
executed in a separate subdirectory inside this directory. The directory will
be cleaned at the beginning of the each bazel test command.
By default, bazel will place this directory under Bazel output base directory.
--test_timeout=seconds OR --test_timeout=seconds,seconds,seconds,seconds
Overrides the timeout value for all tests by using specified number of seconds as a new timeout value. If only one value is provided, then it will be used for all test timeout categories.
Alternatively, four comma-separated values may be provided, specifying individual timeouts for short, moderate, long and eternal tests (in that order). In either form, zero or a negative value for any of the test sizes will be substituted by the default timeout for the given timeout categories as defined by the page Writing Tests. By default, Bazel will use these timeouts for all tests by inferring the timeout limit from the test's size whether the size is implicitly or explicitly set.
Tests which explicitly state their timeout category as distinct from their size will receive the same value as if that timeout had been implicitly set by the size tag. So a test of size 'small' which declares a 'long' timeout will have the same effective timeout that a 'large' tests has with no explicit timeout.
--test_arg=arg
Passes command-line options/flags/arguments to each test process. This
option can be used multiple times to pass several arguments. For example,
--test_arg=--logtostderr --test_arg=--v=3.
--test_env=variable=_value_ OR --test_env=variable
Specifies additional variables that must be injected into the test
environment for each test. If value is not specified it will be
inherited from the shell environment used to start the bazel test
command.
The environment can be accessed from within a test by using
System.getenv("var") (Java), getenv("var") (C or C++),
--run_under=command-prefix
This specifies a prefix that the test runner will insert in front of the test command before running it. The command-prefix is split into words using Bourne shell tokenization rules, and then the list of words is prepended to the command that will be executed.
If the first word is a fully-qualified label (starts with
//) it is built. Then the label is substituted by the
corresponding executable location that is prepended to the command
that will be executed along with the other words.
Some caveats apply:
- The PATH used for running tests may be different than the PATH in your environment,
so you may need to use an absolute path for the
--run_undercommand (the first word in command-prefix). stdinis not connected, so--run_undercan't be used for interactive commands.
Examples:
--run_under=/usr/bin/strace
--run_under='/usr/bin/strace -c'
--run_under=/usr/bin/valgrind
--run_under='/usr/bin/valgrind --quiet --num-callers=20'
Test selection
As documented under Output selection options, you can filter tests by size, timeout, tag, or language. A convenience general name filter can forward particular filter args to the test runner.
Other options for bazel test
The syntax and the remaining options are exactly like
bazel build.
Running executables
The bazel run command is similar to bazel build, except
it is used to build and run a single target. Here is a typical session:
% bazel run java/myapp:myapp -- --arg1 --arg2
Welcome to Bazel
INFO: Loading package: java/myapp
INFO: Loading package: foo/bar
INFO: Loading complete. Analyzing...
INFO: Found 1 target...
...
Target //java/myapp:myapp up-to-date:
bazel-bin/java/myapp:myapp
INFO: Elapsed time: 0.638s, Critical Path: 0.34s
INFO: Running command line: bazel-bin/java/myapp:myapp --arg1 --arg2
Hello there
$EXEC_ROOT/java/myapp/myapp
--arg1
--arg2
bazel run is similar, but not identical, to directly invoking
the binary built by Bazel and its behavior is different depending on whether the
binary to be invoked is a test or not.
When the binary is not a test, the current working directory will be the runfiles tree of the binary.
When the binary is a test, the current working directory will be the exec root
and a good-faith attempt is made to replicate the environment tests are usually
run in. The emulation is not perfect, though, and tests that have multiple
shards cannot be run this way (the
--test_sharding_strategy=disabled command line option can be used
to work around this)
The following extra environment variables are also available to the binary:
BUILD_WORKSPACE_DIRECTORY: the root of the workspace where the build was run.BUILD_WORKING_DIRECTORY: the current working directory where Bazel was run from.
These can be used, for example, to interpret file names on the command line in a user-friendly way.
Options for bazel run
--run_under=command-prefix
This has the same effect as the --run_under option for
bazel test (see above),
except that it applies to the command being run by bazel
run rather than to the tests being run by bazel test
and cannot run under label.
Filtering logging outputs from Bazel
When invoking a binary with bazel run, Bazel prints logging output from Bazel
itself and the binary under invocation. To make the logs less noisy, you can
suppress the outputs from Bazel itself with the --ui_event_filters and
--noshow_progress flags.
For example:
bazel run --ui_event_filters=-info,-stdout,-stderr --noshow_progress //java/myapp:myapp
Executing tests
bazel run can also execute test binaries, which has the effect of
running the test in a close approximation of the environment described at
Writing Tests. Note that none of the
--test_* arguments have an effect when running a test in this manner except
--test_arg .
Cleaning build outputs
The clean command
Bazel has a clean command, analogous to that of Make.
It deletes the output directories for all build configurations performed
by this Bazel instance, or the entire working tree created by this
Bazel instance, and resets internal caches. If executed without any
command-line options, then the output directory for all configurations
will be cleaned.
Recall that each Bazel instance is associated with a single workspace, thus the
clean command will delete all outputs from all builds you've done
with that Bazel instance in that workspace.
To completely remove the entire working tree created by a Bazel
instance, you can specify the --expunge option. When
executed with --expunge, the clean command simply
removes the entire output base tree which, in addition to the build
output, contains all temp files created by Bazel. It also
stops the Bazel server after the clean, equivalent to the shutdown command. For example, to
clean up all disk and memory traces of a Bazel instance, you could
specify:
% bazel clean --expunge
Alternatively, you can expunge in the background by using
--expunge_async. It is safe to invoke a Bazel command
in the same client while the asynchronous expunge continues to run.
The clean command is provided primarily as a means of
reclaiming disk space for workspaces that are no longer needed.
Bazel's incremental rebuilds may not be
perfect so clean can be used to recover a consistent
state when problems arise.
Bazel's design is such that these problems are fixable and
these bugs are a high priority to be fixed. If you
ever find an incorrect incremental build, file a bug report, and report bugs in the tools
rather than using clean.
Querying the dependency graph
Bazel includes a query language for asking questions about the dependency graph used during the build. The query language is used by two commands: query and cquery. The major difference between the two commands is that query runs after the loading phase and cquery runs after the analysis phase. These tools are an invaluable aid to many software engineering tasks.
The query language is based on the idea of algebraic operations over graphs; it is documented in detail in
Bazel Query Reference. Please refer to that document for reference, for examples, and for query-specific command-line options.
The query tool accepts several command-line
option. --output selects the output format.
--[no]keep_going (disabled by default) causes the query
tool to continue to make progress upon errors; this behavior may be
disabled if an incomplete result is not acceptable in case of errors.
The --[no]tool_deps option,
enabled by default, causes dependencies in non-target configurations to be included in the
dependency graph over which the query operates.
The --[no]implicit_deps option, enabled by default, causes
implicit dependencies to be included in the dependency graph over which the query operates. An
implicit dependency is one that is not explicitly specified in the BUILD file
but added by bazel.
Example: "Show the locations of the definitions (in BUILD files) of all genrules required to build all the tests in the PEBL tree."
bazel query --output location 'kind(genrule, deps(kind(".*_test rule", foo/bar/pebl/...)))'
Querying the action graph
The aquery command allows you to query for actions in your build graph.
It operates on the post-analysis configured target graph and exposes
information about actions, artifacts and their relationships.
The tool accepts several command-line options.
--output selects the output format. The default output format
(text) is human-readable, use proto or textproto for
machine-readable format.
Notably, the aquery command runs on top of a regular Bazel build and inherits
the set of options available during a build.
It supports the same set of functions that is also available to traditional
query but siblings, buildfiles and
tests.
For more details, see Action Graph Query.
Miscellaneous commands and options
help
The help command provides on-line help. By default, it
shows a summary of available commands and help topics, as shown in
Building with Bazel.
Specifying an argument displays detailed help for a particular
topic. Most topics are Bazel commands, such as build
or query, but there are some additional help topics
that do not correspond to commands.
--[no]long (-l)
By default, bazel help [topic] prints only a
summary of the relevant options for a topic. If
the --long option is specified, the type, default value
and full description of each option is also printed.
shutdown
Bazel server processes may be stopped by using the shutdown
command. This command causes the Bazel server to exit as soon as it
becomes idle (for example, after the completion of any builds or other
commands that are currently in progress). For more details, see
Client/server implementation.
Bazel servers stop themselves after an idle timeout, so this command is rarely necessary; however, it can be useful in scripts when it is known that no further builds will occur in a given workspace.
shutdown accepts one
option, --iff_heap_size_greater_than _n_, which
requires an integer argument (in MB). If specified, this makes the shutdown
conditional on the amount of memory already consumed. This is
useful for scripts that initiate a lot of builds, as any memory
leaks in the Bazel server could cause it to crash spuriously on
occasion; performing a conditional restart preempts this condition.
info
The info command prints various values associated with
the Bazel server instance, or with a specific build configuration.
(These may be used by scripts that drive a build.)
The info command also permits a single (optional)
argument, which is the name of one of the keys in the list below.
In this case, bazel info key will print only
the value for that one key. (This is especially convenient when
scripting Bazel, as it avoids the need to pipe the result
through sed -ne /key:/s/key://p:
Configuration-independent data
release: the release label for this Bazel instance, or "development version" if this is not a released binary.workspacethe absolute path to the base workspace directory.install_base: the absolute path to the installation directory used by this Bazel instance for the current user. Bazel installs its internally required executables below this directory.output_base: the absolute path to the base output directory used by this Bazel instance for the current user and workspace combination. Bazel puts all of its scratch and build output below this directory.execution_root: the absolute path to the execution root directory under output_base. This directory is the root for all files accessible to commands executed during the build, and is the working directory for those commands. If the workspace directory is writable, a symlink namedbazel-<workspace>is placed there pointing to this directory.output_path: the absolute path to the output directory beneath the execution root used for all files actually generated as a result of build commands. If the workspace directory is writable, a symlink namedbazel-outis placed there pointing to this directory.server_pid: the process ID of the Bazel server process.server_log: the absolute path to the Bazel server's debug log file. This file contains debugging information for all commands over the lifetime of the Bazel server, and is intended for human consumption by Bazel developers and power users.command_log: the absolute path to the command log file; this contains the interleaved stdout and stderr streams of the most recent Bazel command. Note that runningbazel infowill overwrite the contents of this file, since it then becomes the most recent Bazel command. However, the location of the command log file will not change unless you change the setting of the--output_baseor--output_user_rootoptions.used-heap-size,committed-heap-size,max-heap-size: reports various JVM heap size parameters. Respectively: memory currently used, memory currently guaranteed to be available to the JVM from the system, maximum possible allocation.gc-count,gc-time: The cumulative count of garbage collections since the start of this Bazel server and the time spent to perform them. Note that these values are not reset at the start of every build.package_path: A colon-separated list of paths which would be searched for packages by bazel. Has the same format as the--package_pathbuild command line argument.
Example: the process ID of the Bazel server.
% bazel info server_pid 1285
Configuration-specific data
These data may be affected by the configuration options passed
to bazel info, for
example --cpu, --compilation_mode,
etc. The info command accepts all
the options that control dependency
analysis, since some of these determine the location of the
output directory of a build, the choice of compiler, etc.
bazel-bin,bazel-testlogs,bazel-genfiles: reports the absolute path to thebazel-*directories in which programs generated by the build are located. This is usually, though not always, the same as thebazel-*symlinks created in the base workspace directory after a successful build. However, if the workspace directory is read-only, nobazel-*symlinks can be created. Scripts that use the value reported bybazel info, instead of assuming the existence of the symlink, will be more robust.- The complete
"Make" environment. If the
--show_make_envflag is specified, all variables in the current configuration's "Make" environment are also displayed (such asCC,GLIBC_VERSION, etc). These are the variables accessed using the$(CC)orvarref("CC")syntax inside BUILD files.
Example: the C++ compiler for the current configuration.
This is the $(CC) variable in the "Make" environment,
so the --show_make_env flag is needed.
% bazel info --show_make_env -c opt COMPILATION_MODE opt
Example: the bazel-bin output directory for the current
configuration. This is guaranteed to be correct even in cases where
the bazel-bin symlink cannot be created for some reason
(such as if you are building from a read-only directory).
% bazel info --cpu=piii bazel-bin /var/tmp/_bazel_johndoe/fbd0e8a34f61ce5d491e3da69d959fe6/execroot/io_bazel/bazel-out/piii-opt/bin % bazel info --cpu=k8 bazel-bin /var/tmp/_bazel_johndoe/fbd0e8a34f61ce5d491e3da69d959fe6/execroot/io_bazel/bazel-out/k8-opt/bin
version and --version
The version command prints version details about the built Bazel binary, including the changelist at which it was built and the date. These are particularly useful in determining if you have the latest Bazel, or if you are reporting bugs. Some of the interesting values are:
changelist: the changelist at which this version of Bazel was released.label: the release label for this Bazel instance, or "development version" if this is not a released binary. Very useful when reporting bugs.
bazel --version, with no other args, will emit the same output as
bazel version --gnu_format, except without the side-effect of potentially starting
a Bazel server or unpacking the server archive. bazel --version can be run from
anywhere - it does not require a workspace directory.
mobile-install
The mobile-install command installs apps to mobile devices.
Currently only Android devices running ART are supported.
See bazel mobile-install for more information.
The following options are supported:
--incremental
If set, Bazel tries to install the app incrementally, that is, only those
parts that have changed since the last build. This cannot update resources
referenced from AndroidManifest.xml, native code or Java
resources (such as those referenced by Class.getResource()). If these
things change, this option must be omitted. Contrary to the spirit of Bazel
and due to limitations of the Android platform, it is the
responsibility of the user to know when this command is good enough and
when a full install is needed.
If you are using a device with Marshmallow or later, consider the
--split_apks flag.
--split_apks
Whether to use split apks to install and update the application on the device.
Works only with devices with Marshmallow or later. Note that the
--incremental flag
is not necessary when using --split_apks.
--start_app
Starts the app in a clean state after installing. Equivalent to --start=COLD.
--debug_app
Waits for debugger to be attached before starting the app in a clean state after installing.
Equivalent to --start=DEBUG.
--start=_start_type_
How the app should be started after installing it. Supported _start_type_s are:
NODoes not start the app. This is the default.COLDStarts the app from a clean state after install.WARMPreserves and restores the application state on incremental installs.DEBUGWaits for the debugger before starting the app in a clean state after install.
--adb=path
Indicates the adb binary to be used.
The default is to use the adb in the Android SDK specified by
--android_sdk.
--adb_arg=serial
Extra arguments to adb. These come before the subcommand in the
command line and are typically used to specify which device to install to.
For example, to select the Android device or emulator to use:
% bazel mobile-install --adb_arg=-s --adb_arg=deadbeef
invokes adb as
adb -s deadbeef install ...
--incremental_install_verbosity=number
The verbosity for incremental install. Set to 1 for debug logging to be printed to the console.
dump
The dump command prints to stdout a dump of the
internal state of the Bazel server. This command is intended
primarily for use by Bazel developers, so the output of this command
is not specified, and is subject to change.
By default, command will just print help message outlining possible options to dump specific areas of the Bazel state. In order to dump internal state, at least one of the options must be specified.
Following options are supported:
--action_cachedumps action cache content.--packagesdumps package cache content.--skyframedumps state of internal Bazel dependency graph.--rulesdumps rule summary for each rule and aspect class, including counts and action counts. This includes both native and Starlark rules. If memory tracking is enabled, then the rules' memory consumption is also printed.--skylark_memorydumps a pprof compatible .gz file to the specified path. You must enable memory tracking for this to work.
Memory tracking
Some dump commands require memory tracking. To turn this on, you have to pass
startup flags to Bazel:
--host_jvm_args=-javaagent:$BAZEL/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar--host_jvm_args=-DRULE_MEMORY_TRACKER=1
The java-agent is checked into Bazel at
third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar, so make
sure you adjust $BAZEL for where you keep your Bazel repository.
Do not forget to keep passing these options to Bazel for every command or the server will restart.
Example:
% bazel --host_jvm_args=-javaagent:$BAZEL/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1 \
build --nobuild <targets>
# Dump rules
% bazel --host_jvm_args=-javaagent:$BAZEL/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1 \
dump --rules
# Dump Starlark heap and analyze it with pprof
% bazel --host_jvm_args=-javaagent:$BAZEL/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1 \
dump --skylark_memory=$HOME/prof.gz
% pprof -flame $HOME/prof.gz
analyze-profile
The analyze-profile command analyzes data previously gathered
during the build using --profile option. It provides several
options to either perform analysis of the build execution or export data in
the specified format.
The following options are supported:
--dumpdisplays all gathered data in a human-readable format. However, this it does not support other formats yet.
For format details and usage help, see Troubleshooting performance by profiling.
canonicalize-flags
The canonicalize-flags
command, which takes a list of options for a Bazel command and returns a list of
options that has the same effect. The new list of options is canonical. For example,
two lists of options with the same effect are canonicalized to the same new list.
The --for_command option can be used to select between different
commands. At this time, only build and test are
supported. Options that the given command does not support cause an error.
As an example:
% bazel canonicalize-flags -- --config=any_name --test_tag_filters="-lint" --config=any_name --test_tag_filters=-lint
Startup options
The options described in this section affect the startup of the Java virtual machine used by Bazel server process, and they apply to all subsequent commands handled by that server. If there is an already running Bazel server and the startup options do not match, it will be restarted.
All of the options described in this section must be specified using the
--key=value or --key value
syntax. Also, these options must appear before the name of the Bazel
command. Use startup --key=value to list these in a .bazelrc file.
--output_base=dir
This option requires a path argument, which must specify a writable directory. Bazel will use this location to write all its output. The output base is also the key by which the client locates the Bazel server. By changing the output base, you change the server which will handle the command.
By default, the output base is derived from the user's login name,
and the name of the workspace directory (actually, its MD5 digest),
so a typical value looks like:
/var/tmp/google/_bazel_johndoe/d41d8cd98f00b204e9800998ecf8427e.
For example:
OUTPUT_BASE=/var/tmp/google/_bazel_johndoe/custom_output_base
% bazel --output_base ${OUTPUT_BASE}1 build //foo & bazel --output_base ${OUTPUT_BASE}2 build //bar
In this command, the two Bazel commands run concurrently (because of
the shell & operator), each using a different Bazel
server instance (because of the different output bases).
In contrast, if the default output base was used in both commands,
then both requests would be sent to the same server, which would
handle them sequentially: building //foo first, followed
by an incremental build of //bar.
--output_user_root=dir
Points to the root directory where output and install bases are created. The directory must either not exist or be owned by the calling user. In the past, this was allowed to point to a directory shared among various users but it's not allowed any longer. This may be allowed once issue #11100 is addressed.
If the --output_base option is specified, it overrides
using --output_user_root to calculate the output base.
The install base location is calculated based on
--output_user_root, plus the MD5 identity of the Bazel embedded
binaries.
You can use the --output_user_root option to choose an
alternate base location for all of Bazel's output (install base and output
base) if there is a better location in your filesystem layout.
--server_javabase=dir
Specifies the Java virtual machine in which Bazel itself runs. The value must be a path to the directory containing a JDK or JRE. It should not be a label. This option should appear before any Bazel command, for example:
% bazel --server_javabase=/usr/local/buildtools/java/jdk11 build //foo
This flag does not affect the JVMs used by Bazel subprocesses such as applications, tests, tools, and so on. Use build options --javabase or --host_javabase instead.
This flag was previously named --host_javabase (sometimes referred to as the
'left-hand side' --host_javabase), but was renamed to avoid confusion with the
build flag --host_javabase (sometimes referred to as the
'right-hand side' --host_javabase).
--host_jvm_args=string
Specifies a startup option to be passed to the Java virtual machine in which Bazel itself runs. This can be used to set the stack size, for example:
% bazel --host_jvm_args="-Xss256K" build //foo
This option can be used multiple times with individual arguments. Note that setting this flag should rarely be needed. You can also pass a space-separated list of strings, each of which will be interpreted as a separate JVM argument, but this feature will soon be deprecated.
That this does not affect any JVMs used by
subprocesses of Bazel: applications, tests, tools, and so on. To pass
JVM options to executable Java programs, whether run by bazel
run or on the command-line, you should use
the --jvm_flags argument which
all java_binary and java_test programs
support. Alternatively for tests, use bazel test --test_arg=--jvm_flags=foo ....
--host_jvm_debug
This option causes the Java virtual machine to wait for a connection from a JDWP-compliant debugger before calling the main method of Bazel itself. This is primarily intended for use by Bazel developers.
--autodetect_server_javabase
This option causes Bazel to automatically search for an installed JDK on startup,
and to fall back to the installed JRE if the embedded JRE isn't available.
--explicit_server_javabase can be used to pick an explicit JRE to
run Bazel with.
--batch
Batch mode causes Bazel to not use the standard client/server mode, but instead runs a bazel java process for a single command, which has been used for more predictable semantics with respect to signal handling, job control, and environment variable inheritance, and is necessary for running bazel in a chroot jail.
Batch mode retains proper queueing semantics within the same output_base. That is, simultaneous invocations will be processed in order, without overlap. If a batch mode Bazel is run on a client with a running server, it first kills the server before processing the command.
Bazel will run slower in batch mode, or with the alternatives described above. This is because, among other things, the build file cache is memory-resident, so it is not preserved between sequential batch invocations. Therefore, using batch mode often makes more sense in cases where performance is less critical, such as continuous builds.
--max_idle_secs=n
This option specifies how long, in seconds, the Bazel server process
should wait after the last client request, before it exits. The
default value is 10800 (3 hours). --max_idle_secs=0 will cause the
Bazel server process to persist indefinitely.
This option may be used by scripts that invoke Bazel to ensure that
they do not leave Bazel server processes on a user's machine when they
would not be running otherwise.
For example, a presubmit script might wish to
invoke bazel query to ensure that a user's pending
change does not introduce unwanted dependencies. However, if the
user has not done a recent build in that workspace, it would be
undesirable for the presubmit script to start a Bazel server just
for it to remain idle for the rest of the day.
By specifying a small value of --max_idle_secs in the
query request, the script can ensure that if it caused a new
server to start, that server will exit promptly, but if instead
there was already a server running, that server will continue to run
until it has been idle for the usual time. Of course, the existing
server's idle timer will be reset.
--[no]shutdown_on_low_sys_mem
If enabled and --max_idle_secs is set to a positive duration,
after the build server has been idle for a while, shut down the server when the system is
low on memory. Linux only.
In addition to running an idle check corresponding to max_idle_secs, the build server will starts monitoring available system memory after the server has been idle for some time. If the available system memory becomes critically low, the server will exit.
--[no]block_for_lock
If enabled, Bazel will wait for other Bazel commands holding the server lock to complete before progressing. If disabled, Bazel will exit in error if it cannot immediately acquire the lock and proceed.
Developers might use this in presubmit checks to avoid long waits caused by another Bazel command in the same client.
--io_nice_level=n
Sets a level from 0-7 for best-effort IO scheduling. 0 is highest priority, 7 is lowest. The anticipatory scheduler may only honor up to priority 4. Negative values are ignored.
--batch_cpu_scheduling
Use batch CPU scheduling for Bazel. This policy is useful for
workloads that are non-interactive, but do not want to lower their nice value.
See 'man 2 sched_setscheduler'. This policy may provide for better system
interactivity at the expense of Bazel throughput.
Miscellaneous options
--[no]announce_rc
Controls whether Bazel announces command options read from the bazelrc file when starting up. (Startup options are unconditionally announced.)
--color (yes|no|auto)
This option determines whether Bazel will use colors to highlight its output on the screen.
If this option is set to yes, color output is enabled.
If this option is set to auto, Bazel will use color output only if
the output is being sent to a terminal and the TERM environment variable
is set to a value other than dumb, emacs, or xterm-mono.
If this option is set to no, color output is disabled,
regardless of whether the output is going to a terminal and regardless
of the setting of the TERM environment variable.
--config=name
Selects additional config section from
the rc files; for the current command,
it also pulls in the options from command:name if such a section exists. Can be
specified multiple times to add flags from several config sections. Expansions can refer to other
definitions (for example, expansions can be chained).
--curses (yes|no|auto)
This option determines whether Bazel will use cursor controls
in its screen output. This results in less scrolling data, and a more
compact, easy-to-read stream of output from Bazel. This works well with
--color.
If this option is set to yes, use of cursor controls is enabled.
If this option is set to no, use of cursor controls is disabled.
If this option is set to auto, use of cursor controls will be
enabled under the same conditions as for --color=auto.
--[no]show_timestamps
If specified, a timestamp is added to each message generated by Bazel specifying the time at which the message was displayed.